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EXISTENCE OF S2-ALMOST PERIODIC SOLUTIONS TO A

CLASS OF NONAUTONOMOUS STOCHASTIC

EVOLUTION EQUATIONS

PAUL H. BEZANDRY AND TOKA DIAGANA

Abstract. The paper studies the notion of Stepanov almost periodicity (or
S2-almost periodicity) for stochastic processes, which is weaker than the no-
tion of quadratic-mean almost periodicity. Next, we make extensive use of
the so-called Acquistapace and Terreni conditions to prove the existence and
uniqueness of a Stepanov (quadratic-mean) almost periodic solution to a class
of nonautonomous stochastic evolution equations on a separable real Hilbert
space. Our abstract results will then be applied to study Stepanov (quadratic-
mean) almost periodic solutions to a class of n-dimensional stochastic parabolic
partial differential equations.

1. Introduction

Let (H, ‖·‖, 〈·, ·〉) be a separable real Hilbert space and let (Ω,F ,P) be a complete
probability space equipped with a normal filtration {Ft : t ∈ R}, that is, a right-
continuous, increasing family of sub σ-algebras of F .

The impetus of this paper comes from two main sources. The first source is
a paper by Bezandry and Diagana [2], in which the concept of quadratic-mean
almost periodicity was introduced and studied. In particular, such a concept was,
subsequently, utilized to study the existence and uniqueness of a quadratic-mean
almost periodic solution to the class of stochastic differential equations

dX(t) = AX(t)dt + F (t, X(t))dt + G(t, X(t))dW (t), t ∈ R,(1.1)

where A : D(A) ⊂ L2(P; H) 7→ L2(P; H) is a densely defined closed linear operator,
and F : R × L2(P; H) 7→ L2(P; H), G : R × L2(P; H) 7→ L2(P; L0

2) are jointly
continuous functions satisfying some additional conditions.

The second sources is a paper Bezandry and Diagana [3], in which the authors
made extensive use of the almost periodicity to study the existence and unique-
ness of a quadratic-mean almost periodic solution to the class of nonautonomous
semilinear stochastic evolution equations

dX(t) = A(t)X(t) dt + F (t, X(t)) dt + G(t, X(t)) dW (t), t ∈ R,(1.2)

where A(t) for t ∈ R is a family of densely defined closed linear operators satisfying
the so-called Acquistapace and Terreni conditions [1], F : R×L2(P; H) → L2(P; H),
G : R × L2(P; H) → L2(P; L0

2) are jointly continuous satisfying some additional
conditions, and W (t) is a Wiener process.
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The present paper is definitely inspired by [2, 3] and [7, 8] and consists of study-
ing the existence of Stepanov almost periodic (respectively, quadratic-mean almost
periodic) solutions to the Eq. (1.2) when the forcing terms F and G are both
S2-almost periodic. It is worth mentioning that the existence results of this paper
generalize those obtained in Bezandry and Diagana [3], as S2-almost periodicity is
weaker than the concept of quadratic-mean almost periodicity.

The existence of almost periodic (respectively, periodic) solutions to autonomous
stochastic differential equations has been studied by many authors, see, e.g., [1],
[2], [9], and [17] and the references therein. In particular, Da Prato and Tudor
[5], have studied the existence of almost periodic solutions to Eq. (1.2) in the case
when A(t) is periodic. In this paper, it goes back to studying the existence and
uniqueness of a S2-almost periodic (respectively, quadratic-mean almost periodic)
solution to Eq. (1.2) when the operators A(t) satisfy the so-called Acquistapace
and Terreni conditions and the forcing terms F, G are S2-almost periodic. Next,
we make extensive use of our abstract results to establish the existence of Stepanov
(quadratic mean) almost periodic solutions to an n-dimensional system of stochastic
parabolic partial differential equations.

The organization of this work is as follows: in Section 2, we recall some prelim-
inary results that we will use in the sequel. In Section 3, we introduce and study
the notion of Stepanov almost periodicity for stochastic processes. In Section 4, we
give some sufficient conditions for the existence and uniqueness of a Stepanov al-
most periodic (respectively, quadratic-mean almost periodic) solution to Eq. (1.2).
Finally, an example is given to illustrate our main results.

2. Preliminaries

For details of this section, we refer the reader to [2, 4] and the references therein.
Throughout the rest of this paper, we assume that (K, ‖ · ‖K) and (H, ‖ · ‖) are
separable real Hilbert spaces and that (Ω,F ,P) stands for a probability space.
The space L2(K, H) denotes the collection of all Hilbert-Schmidt operators acting
from K into H, equipped with the classical Hilbert-Schmidt norm, which we denote
‖ · ‖2. For a symmetric nonnegative operator Q ∈ L2(K, H) with finite trace we
assume that {W (t) : t ∈ R} is a Q-Wiener process defined on (Ω,F ,P) with values
in K. It is worth mentioning that the Wiener process W can obtained as follows:
let {Wi(t) : t ∈ R}, i = 1, 2, be independent K-valued Q-Wiener processes, then

W (t) =







W1(t) if t ≥ 0,

W2(−t) if t ≤ 0,

is Q-Wiener process with the real number line as time parameter. We then let
Ft = σ{W (s), s ≤ t}.

The collection of all strongly measurable, square-integrable H-valued random
variables, denoted by L2(P; H), is a Banach space when it is equipped with norm

‖X‖L2(P;H) =
√

E‖X‖2
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where the expectation E is defined by

E[X ] =

∫

Ω

X(ω)dP(ω).

Let K0 = Q
1

2 (K) and let L0
2 = L2(K0; H) with respect to the norm

‖Φ‖2
L0

2

= ‖Φ Q
1

2 ‖2
2 = Trace(Φ Q Φ∗) .

Throughout, we assume that A(t) : D(A(t)) ⊂ L2(P; H) → L2(P; H) is a family
of densely defined closed linear operators, and F : R × L2(P; H) 7→ L2(P; H),
G : R × L2(P; H) 7→ L2(P; L0

2) are jointly continuous functions.
In addition to the above-mentioned assumptions, we suppose that A(t) for each

t ∈ R satisfies the so-called Acquistapace and Terreni conditions given as follows:
There exist constants λ0 ≥ 0, θ ∈ (π

2 , π), L, K ≥ 0, and α, β ∈ (0, 1] with
α + β > 1 such that

Σθ ∪ {0} ⊂ ρ(A(t) − λ0), ‖R(λ, A(t) − λ0)‖ ≤
K

1 + |λ|
(2.1)

and

‖(A(t) − λ0)R(λ, A(t) − λ0)[R(λ0, A(t)) − R(λ0, A(s))]‖ ≤ L|t − s|α|λ|β

for all t, s ∈ R, λ ∈ Σθ := {λ ∈ C− {0} : |argλ| ≤ θ}.
Note that the above-mentioned Acquistapace and Terreni conditions do guar-

antee the existence of an evolution family associated with A(t). Throughout the
rest of this paper, we denote by {U(t, s) : t ≥ s with t, s ∈ R}, the evolution
family of operators associated with the family of operators A(t) for each t ∈ R. For
additional details on evolution families, we refer the reader to the landmark book
by Lunardi [11].

Let (B, ‖ · ‖) be a Banach space. This setting requires the following preliminary
definitions.

Definition 2.1. A stochastic process X : R → L2(P; B) is said to be continuous
whenever

lim
t→s

E‖X(t) − X(s)‖2 = 0.

Definition 2.2. A continuous stochastic process X : R → L2(P; B) is said to be
quadratic-mean almost periodic if for each ε > 0 there exists l(ε) > 0 such that any
interval of length l(ε) contains at least a number τ for which

sup
t∈R

E‖X(t + τ) − X(t)‖2 < ε.

The collection of all quadratic-mean almost periodic stochastic processes X :
R → L2(P; B) will be denoted by AP (R; L2(P; B)).

3. S2-Almost Periodicity

Definition 3.1. The Bochner transform Xb(t, s), t ∈ R, s ∈ [0, 1], of a stochastic
process X : R → L2(P; B) is defined by

Xb(t, s) := X(t + s).
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Remark 3.2. A stochastic process Z(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform
of a certain stochastic process X(t),

Z(t, s) = Xb(t, s) ,

if and only if

Z(t + τ, s − τ) = Z(s, t)

for all t ∈ R, s ∈ [0, 1] and τ ∈ [s − 1, s].

Definition 3.3. The space BS2(L2(P; B)) of all Stepanov bounded stochastic pro-
cesses consists of all stochastic processes X on R with values in L2(P; B) such that
Xb ∈ L∞

(

R; L2((0, 1); L2(P; B))
)

. This is a Banach space with the norm

‖X‖S = ‖Xb‖L∞(R;L2) = sup
t∈R

(
∫ 1

0

E‖X(t + s)‖2 ds

)1/2

= sup
t∈R

(
∫ t+1

t

E‖X(τ)‖2 dτ

)1/2

.

Definition 3.4. A stochastic process X ∈ BS2(L2(P; B)) is called Stepanov almost
periodic (or S2-almost periodic) if Xb ∈ AP

(

R; L2((0, 1); L2(P; B))
)

, that is, for
each ε > 0 there exists l(ε) > 0 such that any interval of length l(ε) contains at
least a number τ for which

sup
t∈R

∫ t+1

t

E‖X(s + τ) − X(s)‖2 ds < ε.

The collection of such functions will be denoted by S2AP (R; L2(P; B)).

The proof of the next theorem is straightforward and hence omitted.

Theorem 3.5. If X : R 7→ L2(P; B) is a quadratic-mean almost periodic stochastic
process, then X is S2-almost periodic, that is, AP (R; L2(P; B)) ⊂ S2AP (R; L2(P; B)).

Lemma 3.6. Let (Xn(t))n∈N be a sequence of S2-almost periodic stochastic pro-
cesses such that

sup
t∈R

∫ t+1

t

E‖Xn(s) − X(s)‖2ds → 0, as n → ∞.

Then X ∈ S2AP (R; L2(P; B)).

Proof. For each ε > 0, there exists N(ε) such that
∫ t+1

t

‖Xn(s) − X(s)‖2 ds ≤
ε

3
, ∀t ∈ R, n ≥ N(ε).

From the S2-almost periodicity of XN (t), there exists l(ε) > 0 such that every
interval of length l(ε) contains a number τ with the following property

∫ t+1

t

E‖XN(s + τ) − XN(s)‖2 ds <
ε

3
, ∀t ∈ R.

Now
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E‖X(t + τ) − X(t)‖2 = E‖X(t + τ) − XN (t + τ) + XN (t + τ) − XN (t) + XN (t) − X(t)‖2

≤ E‖X(t + τ) − XN (t + τ)‖2 + E‖XN(t + τ) − XN (t)‖2

+ E‖XN(t) − X(t)‖2

and hence

sup
t∈R

∫ t+1

t

E‖X(s + τ) − X(s)‖2ds <
ε

3
+

ε

3
+

ε

3
= ε,

which completes the proof. �

Similarly,

Lemma 3.7. Let (Xn(t))n∈N be a sequence of quadratic-mean almost periodic sto-
chastic processes such that

sup
s∈R

E‖Xn(s) − X(s)‖2 → 0, as n → ∞

Then X ∈ AP (R; L2(P; B)).

Using the inclusion S2AP (R; L2(P; B)) ⊂ BS2(R; L2(P; B)) and the fact that
(BS2(R; L2(P; B)), ‖·‖S) is a Banach space, one can easily see that the next theorem
is a straightforward consequence of Lemma 3.6.

Theorem 3.8. The space S2AP (R; L2(P; B)) equipped with the norm

‖X‖S2 = sup
t∈R

(
∫ t+1

t

E‖X(s)‖2 ds

)1/2

is a Banach space.

Let (B1, ‖·‖B1
) and (B2, ‖·‖B2

) be Banach spaces and let L2(P; B1) and L2(P; B2)
be their corresponding L2-spaces, respectively.

Definition 3.9. A function F : R × L2(P; B1) → L2(P; B2)), (t, Y ) 7→ F (t, Y ) is

said to be S2-almost periodic in t ∈ R uniformly in Y ∈ K̃ where K̃ ⊂ L2(P; B1) is

a compact if for any ε > 0, there exists l(ε, K̃) > 0 such that any interval of length

l(ε, K̃) contains at least a number τ for which

sup
t∈R

∫ t+1

t

E‖F (s + τ, Y ) − F (s, Y )‖2
B2

ds < ε

for each stochastic process Y : R → K̃.

Theorem 3.10. Let F : R × L2(P; B1) → L2(P; B2), (t, Y ) 7→ F (t, Y ) be a S2-

almost periodic process in t ∈ R uniformly in Y ∈ K̃, where K̃ ⊂ L2(P; B1) is
compact. Suppose that F is Lipschitz in the following sense:

E‖F (t, Y ) − F (t, Z)‖2
B2

≤ M E‖Y − Z‖2
B1

for all Y, Z ∈ L2(P; B1) and for each t ∈ R, where M > 0. Then for any S2-
almost periodic process Φ : R → L2(P; B1), the stochastic process t 7→ F (t, Φ(t)) is
S2-almost periodic.
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4. S2-Almost Periodic Solutions

Let C(R, L2(P; H)) (respectively, C(R, L2(P; L0
2)) denote the class of continuous

stochastic processes from R into L2(P; H)) (respectively, the class of continuous
stochastic processes from R into L2(P; L0

2)).
To study the existence of S2-almost periodic solutions to Eq. (1.2), we first study

the existence of S2-almost periodic solutions to the stochastic non-autonomous
differential equations

(4.1) dX(t) = A(t)X(t)dt + f(t)dt + g(t)dW (t), t ∈ R,

where the linear operators A(t) for t ∈ R, satisfy the above-mentioned assump-
tions and the forcing terms f ∈ S2AP (R, L2(P; H)) ∩ C(R, L2(P; H)) and g ∈
S2AP (R, L2(P; L0

2)) ∩ C(R, L2(P; L0
2)).

Our setting requires the following assumption:

(H.0) The operators A(t), U(r, s) commute and that the evolution family U(t, s)
is asymptotically stable. Namely, there exist some constants M, δ > 0 such
that

‖U(t, s)‖ ≤ Me−δ(t−s) for every t ≥ s.

In addition, R(λ0, A(·)) ∈ S2AP (R;L(L2(P; H))) where λ0 is as in Eq.
(2.1).

Theorem 4.1. Under previous assumptions, we assume that (H.0) holds. Then
Eq. (4.1) has a unique solution X ∈ S2AP (R; L2(P; H)).

We need the following lemmas. For the proofs of Lemma 4.2 and Lemma 4.3,
one can easily follow along the same lines as in the proof of Theorem 4.6.

Lemma 4.2. Under assumptions of Theorem 4.1, then the integral defined by

Xn(t) =

∫ n

n−1

U(t, t − ξ)f(t − ξ)dξ

belongs to S2AP (R; L2(P; H)) for each for n = 1, 2, ....

Lemma 4.3. Under assumptions of Theorem 4.1, then the integral defined by

Yn(t) =

∫ n

n−1

U(t, t − ξ)g(t − ξ)dW (ξ).

belongs to S2AP (R; L2(P; L0
2)) for each for n = 1, 2, ....

Proof. (Theorem 4.1) By assumption there exist some constants M, δ > 0 such that

‖U(t, s)‖ ≤ Me−δ(t−s) for every t ≥ s.

Let us first prove uniqueness. Assume that X : R → L2(P; H) is bounded stochastic
process that satisfies the homogeneous equation

dX(t) = A(t)X(t)dt, t ∈ R.(4.2)

Then X(t) = U(t, s)X(s) for any t ≥ s. Hence ‖X(t)‖ ≤ MDe−δ(t−s) with
‖X(s)‖ ≤ D for s ∈ R almost surely. Take a sequence of real numbers (sn)n∈N

such that sn → −∞ as n → ∞. For any t ∈ R fixed, one can find a subsequence
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(snk
)k∈N ⊂ (sn)n∈N such that snk

< t for all k = 1, 2, .... By letting k → ∞, we get
X(t) = 0 almost surely.

Now, if X1, X2 : R → L2(P; H) are bounded solutions to Eq. (4.1), then X =
X1−X2 is a bounded solution to Eq. (4.2). In view of the above, X = X1−X2 = 0
almost surely, that is, X1 = X2 almost surely.

Now let us investigate the existence. Consider for each n = 1, 2, ..., the integrals

Xn(t) =

∫ n

n−1

U(t, t − ξ)f(t − ξ)dξ

and

Yn(t) =

∫ n

n−1

U(t, t − ξ)g(t − ξ)dW (ξ).

First of all, we know by Lemma 4.2 that the sequence Xn belongs to S2AP (R; L2(P; H)).
Moreover, note that

∫ t+1

t

E‖Xn(s)‖2 ds ≤

∫ t+1

t

E‖

∫ n

n−1

U(s, s − ξ) f(s − ξ) dξ‖2 ds

≤ M2

∫ n

n−1

e−2δξ

{
∫ t+1

t

E‖f(s − ξ)‖2 ds

}

dξ

≤ M2‖f‖2
S2

{
∫ n

n−1

e−2δξ dξ

}

≤
M2

2δ
‖f‖2

S2 e−2δn(e2δ + 1) .

Since the series

M2

2δ
(e2δ + 1)

∞
∑

n=2

e−2δn

is convergent, it follows from the Weirstrass test that the sequence of partial sums
defined by

Ln(t) :=

n
∑

k=1

Xk(t)

converges in the sense of the norm ‖ · ‖S2 uniformly on R.
Now let

l(t) :=
∞
∑

n=1

Xn(t)

for each t ∈ R.
Observe that

l(t) =

∫ t

−∞

U(t, ξ)f(ξ)dξ, t ∈ R,

and hence l ∈ C(R; L2(P; H)).
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Similarly, the sequence Yn belongs to S2AP (R; L2(P; L0
2)). Moreover, note that

∫ t+1

t

E‖Yn(s)‖2 ds = TrQ

∫ t+1

t

E

∫ n

n−1

‖U(s, s − ξ)‖2 ‖g(s − ξ)‖2 d(ξ) ds

≤ M2 TrQ

∫ n

n−1

e−2δξ

{
∫ t+1

t

E‖g(s − ξ)‖2 ds

}

dξ

≤
M2

2δ
TrQ ‖g‖2

S2 e−2δn(e2δ + 1) .

Proceeding as before we can show easily that the sequence of partial sums defined
by

Mn(t) :=

n
∑

k=1

Yk(t)

converges in sense of the norm ‖ · ‖S2 uniformly on R.
Now let

m(t) :=

∞
∑

n=1

Yn(t)

for each t ∈ R.
Observe that

m(t) =

∫ t

−∞

U(t, ξ)g(ξ)dW (ξ), t ∈ R,

and hence m ∈ C(R, L2(P; L0
2)).

Setting

X(t) =

∫ t

−∞

U(t, ξ)f(ξ) dξ +

∫ t

−∞

U(t, ξ)g(ξ) dW (ξ),

one can easily see that X is a bounded solution to Eq. (4.1). Moreover,

∫ t+1

t

E‖X(s) − (Ln(s) + Mn(s)) ‖2ds → 0 as n → ∞

uniformly in t ∈ R, and hence using Lemma 3.6, it follows that X is a S2-almost
periodic solution. In view of the above, it follows that X is the only bounded
S2-almost periodic solution to Eq. (4.1). �

Throughout the rest of this section, we require the following assumptions:

(H.1) The function F : R × L2(P; H) → L2(P; H), (t, X) 7→ F (t, X) is S2-almost
periodic in t ∈ R uniformly in X ∈ O (O ⊂ L2(P; H) being a compact).
Moreover, F is Lipschitz in the following sense: there exists K > 0 for
which

E‖F (t, X) − F (t, Y )‖2 ≤ K E‖X − Y ‖2

for all stochastic processes X, Y ∈ L2(P; H) and t ∈ R;
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(H.2) The function G : R × L2(P; H) → L2(P; L0
2), (t, X) 7→ G(t, X) be a S2-

almost periodic in t ∈ R uniformly in X ∈ O′ (O′ ⊂ L2(P; H) being a
compact). Moreover, G is Lipschitz in the following sense: there exists
K ′ > 0 for which

E‖G(t, X) − G(t, Y )‖2
L0

2

≤ K ′ E‖X − Y ‖2

for all stochastic processes X, Y ∈ L2(P; H) and t ∈ R.

In order to study (1.2) we need the following lemma which can be seen as an
immediate consequence of ([16], Proposition 4.4).

Lemma 4.4. Suppose A(t) satisfies the Acquistapace and Terreni conditions, U(t, s)
is exponentially stable and R(λ0, A(·)) ∈ S2AP (R;L(L2(P; H))). Let h > 0. Then,
for any ε > 0, there exists l(ε) > 0 such that every interval of length l contains at
least a number τ with the property that

‖U(t + τ, s + τ) − U(t, s)‖ ≤ ε e−
δ

2
(t−s)

for all t − s ≥ h.

Definition 4.5. A Ft-progressively process {X(t)}t∈R is called a mild solution of
(1.2) on R if

X(t) = U(t, s)X(s) +

∫ t

s

U(t, σ)F (σ, X(σ)) dσ(4.3)

+

∫ t

s

U(t, σ)G(σ, X(σ)) dW (σ)

for all t ≥ s for each s ∈ R.

Now, we are ready to present our first main result.

Theorem 4.6. Under assumptions (H.0)-(H.1)-(H.2), then Eq. (1.2) has a unique
S2-almost period, which is also a mild solution and can be explicitly expressed as
follows:

X(t) =

∫ t

−∞

U(t, σ)F (σ, X(σ))dσ+

∫ t

−∞

U(t, σ)G(σ, X(σ))dW (σ) for each t ∈ R

whenever

Θ := M2

(

2
K

δ2
+

K ′ · Tr(Q)

δ

)

< 1.

Proof. Consider for each n = 1, 2, . . ., the integral

Rn(t) =

∫ n

n−1

U(t, t − ξ)f(t − ξ) dξ +

∫ n

n−1

U(t, t − ξ)g(t − ξ) dW (ξ) .

where f(σ) = F (σ, X(σ)) and g(σ) = G(σ, X(σ)).
Set

Xn(t) =

∫ n

n−1

U(t, t − ξ)f(t − ξ) dξ and,
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Yn(t) =

∫ n

n−1

U(t, t − ξ)g(t − ξ) dW (ξ) .

Let us first show that Xn(·) is S2-almost periodic whenever X is. Indeed, assuming
that X is S2-almost periodic and using (H.1), Theorem 3.10, and Lemma 4.4, given
ε > 0, one can find l(ε) > 0 such that any interval of length l(ε) contains at least
τ with the property that

‖U(t + τ, s + τ) − U(t, s)‖ ≤ εe−
δ

2
(t−s)

for all t − s ≥ ε, and
∫ t+1

t

E‖f(s + τ) − f(s)‖2 ds < η(ε)

for each t ∈ R, where η(ε) → 0 as ε → 0.

For the S2-almost periodicity of Xn(·), we need to consider two cases.
Case 1: n ≥ 2.

∫ t+1

t

E‖Xn(s + τ) − Xn(s)‖2 ds

=

∫ t+1

t

E‖

∫ n

n−1

U(s+τ, s+τ−ξ)f(s+τ−ξ)dξ−

∫ n

n−1

U(s, s−ξ)f(s−ξ)dξ‖2ds

≤ 2

∫ t+1

t

∫ n

n−1

‖U(s + τ, s + τ − ξ)‖2E‖f(s + τ − ξ) − f(s − ξ)‖2 dξ ds

+2

∫ t+1

t

∫ n

n−1

‖U(s + τ, s + τ − ξ) − U(s, s − ξ)‖2E‖f(s− ξ)‖2 dξ ds

≤ 2 M2

∫ t+1

t

∫ n

n−1

e−2δξ E‖f(s + τ − ξ) − f(s − ξ)‖2 dξ ds

+2 ε2

∫ t+1

t

∫ n

n−1

e−δξE‖f(s− ξ)‖2 dξ ds

≤ 2 M2

∫ n

n−1

e−2δξ

{
∫ t+1

t

E‖f(s + τ − ξ) − f(s − ξ)‖2 ds

}

dξ

+2 ε2

∫ n

n−1

e−δξ

{
∫ t+1

t

E‖f(s− ξ)‖2 ds

}

dξ

Case 2: n = 1.
We have

∫ t+1

t

E‖X1(s + τ) − X1(s)‖
2 ds

=

∫ t+1

t

E‖

∫ 1

0

U(s+ τ, s+ τ − ξ) f(s+ τ − ξ)dξ−

∫ 1

0

U(s, s− ξ) f(s− ξ)dξ‖2 ds

≤ 3

∫ t+1

t

∫ 1

0

‖U(s + τ, s + τ − ξ)‖2E‖f(s + τ − ξ) − f(s − ξ)‖2 dξ ds
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+3

∫ t+1

t

∫ 1

ε

‖U(s + τ, s + τ − ξ) − U(s, s − ξ)‖2E‖f(s− ξ)‖2 dξ ds

+3

∫ t+1

t

∫ ε

0

‖U(s + τ, s + τ − ξ) − U(s, s − ξ)‖2E‖f(s− ξ)‖2 dξ ds

≤ 3 M2

∫ t+1

t

∫ 1

0

e−2δξ E‖f(s + τ − ξ) − f(s − ξ)‖2 dξ ds

+3 ε2

∫ t+1

t

∫ 1

ε

e−δξE‖f(s− ξ)‖2 dξ ds+6M2

∫ t+1

t

∫ ε

0

e−2δξE‖f(s− ξ)‖2 dξ ds

≤ 3 M2

∫ 1

0

e−2δξ

{
∫ t+1

t

E‖f(s + τ − ξ) − f(s − ξ)‖2 ds

}

dξ

+3ε2

∫ 1

ε

e−δξ

{
∫ t+1

t

E‖f(s− ξ)‖2 ds

}

dξ+6M2

∫ ε

0

e−δξ

{
∫ t+1

t

E‖f(s− ξ)‖2 ds

}

dξ

which implies that Xn(·) is S2-almost periodic.
Similarly, assuming that X is S2-almost periodic and using (H.2), Theorem 3.10,

and Lemma 4.4, given ε > 0, one can find l(ε) > 0 such that any interval of length
l(ε) contains at least τ with the property that

‖U(t + τ, s + τ) − U(t, s)‖ ≤ εe−
δ

2
(t−s)

for all t − s ≥ ε, and

∫ t+1

t

E‖g(s + τ) − g(s)‖2
L0

2

ds < η(ε)

for each t ∈ R, where η(ε) → 0 as ε → 0.
The next step consists in proving the S2-almost periodicity of Yn(·). Here again,

we need to consider two cases.

Case 1: n ≥ 2
∫ t+1

t

E‖Yn(s + τ) − Yn(s)‖2 ds

=

∫ t+1

t

E‖

∫ n

n−1

U(s + τ, s + τ − ξ) g(s + τ − ξ) dW (ξ)

−

∫ n

n−1

U(s, s − ξ) g(s − ξ) dW (ξ)‖2 ds

≤ 2 TrQ

∫ t+1

t

∫ n

n−1

‖U(s + τ, s + τ − ξ)‖2E‖g(s + τ − ξ) − g(s − ξ)‖2
L0

2

dξ ds

+2 TrQ

∫ t+1

t

∫ n

n−1

‖U(s + τ, s + τ − ξ) − U(s, s − ξ)‖2E‖g(s − ξ)‖2
L0

2

dξ ds

≤ 2 TrQ M2

∫ t+1

t

∫ n

n−1

e−2δξ E‖g(s + τ − ξ) − g(s − ξ)‖2
L0

2

dξ ds
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+2 TrQ ε2

∫ t+1

t

∫ n

n−1

e−δξE‖g(s− ξ)‖2
L0

2

dξ ds

≤ 2 TrQ M2

∫ n

n−1

e−2δξ

{
∫ t+1

t

E‖g(s + τ − ξ) − g(s − ξ)‖2
L0

2

ds

}

dξ

+2 TrQ ε2

∫ n

n−1

e−δξ

{
∫ t+1

t

E‖g(s− ξ)‖2
L0

2

ds

}

dξ

Case 2: n = 1
∫ t+1

t

E‖Y1(s + τ) − Y1(s)‖
2 ds

=

∫ t+1

t

E‖

∫ 1

0

U(s + τ, s + τ − ξ) g(s + τ − ξ) dW (ξ)

−

∫ n+1

n

U(s, s − ξ) g(s − ξ) dW (ξ)‖2 ds

≤ 3 TrQ

∫ t+1

t

∫ 1

0

‖U(s + τ, s + τ − ξ)‖2E‖g(s + τ − ξ) − g(s − ξ)‖2
L0

2

dξ ds

+3 TrQ

∫ t+1

t

∫ 1

ε

‖U(s + τ, s + τ − ξ) − U(s, s − ξ)‖2E‖g(s − ξ)‖2
L0

2

dξ ds

+3 TrQ

∫ t+1

t

∫ ε

0

‖U(s + τ, s + τ − ξ) − U(s, s − ξ)‖2E‖g(s− ξ)‖2
L0

2

dξ ds

≤ 3 TrQ M2

∫ t+1

t

∫ 1

0

e−2δξ E‖g(s + τ − ξ) − g(s − ξ)‖2
L0

2

dξ ds

+3 TrQ ε2

∫ t+1

t

∫ 1

ε

e−δξE‖g(s− ξ)‖2
L0

2

dξ ds

+6 TrQ M2

∫ t+1

t

∫ ε

0

e−2δξE‖g(s− ξ)‖2
L0

2

dξ ds

≤ 3 TrQ M2

∫ 1

0

e−2δξ

{
∫ t+1

t

E‖g(s + τ − ξ) − g(s − ξ)‖2
L0

2

ds

}

dξ

+3 TrQ ε2

∫ 1

ε

e−δξ

{
∫ t+1

t

E‖g(s− ξ)‖2
L0

2

ds

}

dξ

+6 TrQ M2

∫ ε

0

e−2δξ

{
∫ t+1

t

E‖g(s − ξ)‖2
L0

2

ds

}

dξ,

which implies that Yn(·) is S2-almost periodic.
Setting

X(t) :=

∫ t

−∞

U(t, σ)F (σ, X(σ)) dσ +

∫ t

−∞

U(t, σ)G(σ, X(σ)) dW (σ)
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and proceeding as in the proof of Theorem 4.1, one can easily see that
∫ t+1

t

E‖X(s) − (Xn(s) + Yn(s)) ‖2ds → 0 as n → ∞

uniformly in t ∈ R, and hence using Lemma 3.6, it follows that X is a S2-almost
periodic solution.

Define the nonlinear operator Γ by

ΓX(t) :=

∫ t

−∞

U(t, σ)F (σ, X(σ)) dσ +

∫ t

−∞

U(t, σ)G(σ, X(σ)) dW (σ) .

In view of the above, it is clear that Γ maps S2AP (R; L2(P; B)) into itself. Con-
sequently, using the Banach fixed-point principle it follows that Γ has a unique
fixed-point {X0(t), t ∈ R} whenever Θ < 1, which in fact is the only S2-almost
periodic solution to Eq. (1.2). �

Our second main result is weaker than Theorem 4.6 although we require that G
be bounded in some sense.

Theorem 4.7. Under assumptions (H.0)-(H.1)-(H.2), if we assume that there exists
L > 0 such that E‖G(t, Y )‖2

L0

2

≤ L for all t ∈ R and Y ∈ L2(P; H), then Eq. (1.2)

has a unique quadratic-mean almost period mild solution, which can be explicitly
expressed as follows:

X(t) =

∫ t

−∞

U(t, σ)F (σ, X(σ))dσ+

∫ t

−∞

U(t, σ)G(σ, X(σ))dW (σ) for each t ∈ R

whenever

Θ := M2

(

2
K

δ2
+

K ′ · Tr(Q)

δ

)

< 1.

Proof. We use the same notations as in the proof of Theorem 4.6. Let us first show
that Xn(·) is quadratic mean almost periodic upon the S2-almost periodicity of
f = F (·, X(·)). Indeed, assuming that X is S2-almost periodic and using (H.1),
Theorem 3.10, and Lemma 4.4, given ε > 0, one can find l(ε) > 0 such that any
interval of length l(ε) contains at least τ with the property that

‖U(t + τ, s + τ) − U(t, s)‖ ≤ εe−
δ

2
(t−s)

for all t − s ≥ ε, and
∫ t+1

t

E‖f(s + τ) − f(s)‖2 ds < η(ε)

for each t ∈ R, where η(ε) → 0 as ε → 0.
The next step consists in proving the quadratic-mean almost periodicity of Xn(·).

Here again, we need to consider two cases.

Case 1: n ≥ 2.

E‖Xn(t + τ) − Xn(t)‖2

= E‖

∫ n

n−1

U(t + τ, t + τ − ξ) f(t + τ − ξ) dξ
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−

∫ n

n−1

U(t, t − ξ) f(s − ξ) dξ‖2

≤ 2

∫ n

n−1

‖U(t + τ, t + τ − ξ)‖2E‖f(t + τ − ξ) − f(t − ξ)‖2 dξ

+2

∫ n

n−1

‖U(t + τ, t + τ − ξ) − U(t, t − ξ)‖2E‖f(t− ξ)‖2 dξ

≤ 2 M2

∫ n

n−1

e−2δξ E‖f(t + τ − ξ) − f(t − ξ)‖2 dξ

+2 ε2

∫ n

n−1

e−δξE‖f(t− ξ)‖2 dξ

≤ 2 M2

∫ n

n−1

e−2δξ E‖f(t + τ − ξ) − f(t − ξ)‖2 dξ

+2 ε2

∫ n

n−1

e−δξ E‖f(t − ξ)‖2 dξ

≤ 2 M2

∫ t−n

t−n+1

E‖f(r + τ) − f(r)‖2 dr + 2 ε2

∫ t−n

t−n+1

E‖f(r)‖2 dr

Case 2: n = 1.

E‖X1(t + τ) − X1(t)‖
2

= E‖

∫ 1

0

U(t + τ, t + τ − ξ) f(t + τ − ξ) dξ −

∫ 1

0

U(t, t − ξ) f(t − ξ) dξ‖2

≤ 3 E

[
∫ 1

0

‖U(t + τ, t + τ − ξ)‖ ‖f(t + τ − ξ) − f(t − ξ)‖ dξ

]2

+3 E

[
∫ 1

ε

‖U(t + τ, t + τ − ξ) − U(t, t − ξ)‖ ‖f(t − ξ)‖ dξ

]2

+3 E

[
∫ ε

0

‖U(t + τ, t + τ − ξ) − U(t, t − ξ)‖ ‖f(t − ξ)‖ dξ

]2

≤ 3 M2 E

[
∫ 1

0

e−δξ ‖f(t + τ − ξ) − f(t − ξ)‖ dξ

]2

+3 ε2 E

[
∫ 1

ε

e−
δ

2
ξ ‖f(t − ξ)‖ dξ

]2

+ 12 M2 E

[
∫ ε

0

e−δξ ‖f(t− ξ)‖2 dξ

]2

Now, using Cauchy-Schwarz inequality, we have

≤ 3 M2

(
∫ 1

0

e−δξ dξ

) (
∫ 1

0

e−δξE‖f(t + τ − ξ) − f(t − ξ)‖2 dξ

)

+3 ε2

(
∫ 1

ε

e−
δ

2
ξ dξ

) (
∫ 1

ε

e−
δ

2
ξE‖f(t − ξ)‖2 dξ

)
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+12 M2

(
∫ ε

0

e−δξ dξ

) (
∫ ε

0

e−δξE‖f(t− ξ)‖2 dξ

)

≤ 3 M2

∫ t

t−1

E‖f(r + τ) − f(r)‖2 dr

+3 ε2

∫ t−ε

t−1

E‖f(r)‖2 dr + 12 M2 ε

∫ t

t−ε

E‖f(r)‖2 dr,

which implies that Xn(·) quadratic mean almost periodic.
Similarly, using (H.2), Theorem 3.10, and Lemma 4.4, given ε > 0, one can find

l(ε) > 0 such that any interval of length l(ε) contains at least τ with the property
that

‖U(t + τ, s + τ) − U(t, s)‖ ≤ εe−
δ

2
(t−s)

for all t − s ≥ ε, and
∫ t+1

t

E‖g(s + τ) − g(s)‖2
L0

2

ds < η

for each t ∈ R, where η(ε) → 0 as ε → 0. Moreover, there exists a positive constant
L > 0 such that

sup
σ∈R

E‖g(σ)‖2
L0

2

≤ L.

The next step consists in proving the quadratic mean almost periodicity of Yn(·).

Case 1: n ≥ 2

E ‖Yn(t + τ) − Yn(t)‖
2

= E

∥

∥

∥

∥

∫ n

n−1

U(t + τ, t + τ − ξ) g(s + τ − ξ) dW (ξ) −

∫ n

n−1

U(t, t − ξ) g(t − ξ) dW (ξ)

∥

∥

∥

∥

2

≤ 2 TrQ

∫ n

n−1

‖U(t + τ, t + τ − ξ)‖2E‖g(t + τ − ξ) − g(t − ξ)‖2
L0

2

dξ

+2 TrQ

∫ n

n−1

‖U(t + τ, t + τ − ξ) − U(t, t − ξ)‖2E‖g(t− ξ)‖2
L0

2

dξ

≤ 2 TrQ M2

∫ n

n−1

e−2δξ E‖g(t + τ − ξ) − g(t − ξ)‖2
L0

2

dξ

+2 TrQ ε2

∫ n

n−1

e−δξE‖g(t− ξ)‖2
L0

2

dξ

≤ 2 TrQ M2

∫ t−n+1

t−n

E‖g(r + τ) − g(r)‖2
L0

2

dr + 2 TrQ ε2

∫ t−n+1

t−n

E‖g(r)‖2
L0

2

dr.

Case 2: n = 1

E‖Y1(t + τ) − Y1(t)‖
2

= E‖

∫ 1

0

U(t + τ, t + τ − ξ) g(s + τ − ξ) dW (ξ)
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−

∫ 1

0

U(t, t − ξ) g(t − ξ) dW (ξ)‖2

≤ 3 TrQ

∫ 1

0

‖U(t + τ, t + τ − ξ)‖2E‖g(t + τ − ξ) − g(t − ξ)‖2
L0

2

dξ

+3 TrQ

∫ t+1

t

(
∫ 1

ε

+

∫ ε

0

)

‖U(t + τ, t + τ − ξ) − U(t, t − ξ)‖2E‖g(t− ξ)‖2
L0

2

dξ

≤ 3 TrQ M2

∫ 1

0

e−2δξ E‖g(t + τ − ξ) − g(t − ξ)‖2
L0

2

dξ

+3 TrQ ε2

∫ 1

ε

e−δξE‖g(t− ξ)‖2
L0

2

dξ + 6 TrQ M2

∫ ε

0

e−2δξE‖g(t− ξ)‖2
L0

2

dξ

≤ 3 TrQ M2

∫ 1

0

E‖g(t + τ − ξ) − g(t − ξ)‖2
L0

2

dξ

+3 TrQ ε2

∫ 1

ε

E‖g(t− ξ)‖2
L0

2

dξ + 6 TrQ M2

∫ ε

0

E‖g(t− ξ)‖2
L0

2

dξ

≤ 3 TrQ M2

∫ t

t−1

E‖g(r + τ) − g(r)‖2
L0

2

dr

+3 TrQ ε2

∫ t

t−1

E‖g(r)‖2
L0

2

dr + 6 TrQ M2

∫ ε

0

E‖g(t− ξ)‖2
L0

2

dξ

≤ 3TrQM2

∫ t

t−1

E‖g(r+τ)−g(r)‖2
L0

2

dr+3TrQε2

∫ t

t−1

E‖g(r)‖2
L0

2

dr+6εTrQM2L,

which implies that Yn(·) is quadratic-mean almost almost periodic. Moreover, set-
ting

X(t) =

∫ t

−∞

U(t, σ)F (σ, X(σ)) dσ +

∫ t

−∞

U(t, σ)G(σ, X(σ)) dW (σ)

for each t ∈ R and proceeding as in the proofs of Theorem 4.1 and Theorem 4.6,
one can easily see that

sup
s∈R

E‖X(s)− (Xn(s) + Yn(s)) ‖2 → 0 as n → ∞

and hence using Lemma 3.7, it follows that X is a quadratic mean almost periodic
solution to Eq. (1.2).

In view of the above, the nonlinear operator Γ as in the proof of Theorem 4.6
maps AP (R; L2(P; B)) into itself. Consequently, using the Banach fixed-point prin-
ciple it follows that Γ has a unique fixed-point {X1(t), t ∈ R} whenever Θ < 1,
which in fact is the only quadratic mean almost periodic solution to Eq. (1.2).

�

EJQTDE, 2008 No. 35, p. 16



5. Example

Let O ⊂ R
n be a bounded subset whose boundary ∂O is both of class C2 and

locally on one side of O. Of interest is the following stochastic parabolic partial
differential equation

dtX(t, x) = A(t, x)X(t, x)dt + F (t, X(t, x))dt + G(t, X(t, x)) dW (t),(5.1)
n

∑

i,j=1

ni(x)aij(t, x)diX(t, x) = 0, t ∈ R, x ∈ ∂O,(5.2)

where dt =
d

dt
, di =

d

dxi
, n(x) = (n1(x), n2(x), ..., nn(x)) is the outer unit normal

vector, the family of operators A(t, x) are formally given by

A(t, x) =

n
∑

i,j=1

∂

∂xi

(

aij(t, x)
∂

∂xj

)

+ c(t, x), t ∈ R, x ∈ O,

W is a real valued Brownian motion, and aij , c (i, j = 1, 2, ..., n) satisfy the following
conditions:

We require the following assumptions:

(H.3) The coefficients (aij)i,j=1,...,n are symmetric, that is, aij = aji for all i, j =
1, ..., n. Moreover,

aij ∈ Cµ
b (R; L2(P; C(O))) ∩ Cb(R; L2(P; C1(O))) ∩ S2AP (R; L2(P; L2(O)))

for all i, j = 1, ...n, and

c ∈ Cµ
b (R; L2(P; L2(O))) ∩ Cb(R; L2(P; C(O))) ∩ S2AP (R; L2(P; L1(O)))

for some µ ∈ (1/2, 1].
(H.4) There exists δ0 > 0 such that

n
∑

i,j=1

aij(t, x)ηi ηj ≥ δ0|η|
2,

for all (t, x) ∈ R ×O and η ∈ R
n.

Under previous assumptions, the existence of an evolution family U(t, s) satis-
fying (H.0) is guaranteed, see, eg., [16].

Now let H = L2(O) and let H2(O) be the Sobolev space of order 2 on O. For
each t ∈ R, define an operator A(t) on L2(P; H) by

D(A(t)) = {X ∈ L2(P, H2(O)) :

n
∑

i,j=1

ni(·)aij(t, ·)diX(t, ·) = 0 on ∂O} and,

A(t)X = A(t, x)X(x), for all X ∈ D(A(t)) .

Let us mention that Corollary 5.1 and Corollary 5.2 are immediate consequences
of Theorem 4.6 and Theorem 4.7, respectively.
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Corollary 5.1. Under assumptions (H.1)-(H.2)-(H.3)-(H.4), then Eqns.(5.1)-(5.2)
has a unique mild solution, which obviously is S2-almost periodic, whenever M is
small enough.

Similarly,

Corollary 5.2. Under assumptions (H.1)-(H.2)-(H.3)-(H.4), if we suppose that
there exists L > 0 such that E‖G(t, Y )‖2

L0

2

≤ L for all t ∈ R and Y ∈ L2(P; L2(O)).

Then the system Eqns. (5.1)-(5.2) has a unique quadratic mean almost periodic,
whenever M is small enough.
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